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Abstract

This report presents detailed derivations of the

expressions for the steady-state disturbance velocity at a pro-

peller blade due to pressure loading and thickness. A procedure

for separating lifting line velocities from the total is outlined,

and conclusions are drawn regarding the presence of camber and

incidence corrections for propellers with sym.etrical blades and

chordwise load distributions.



Nomenclature

B = Kernel function for bound vortices defined in (5.9)

c = blade camber function

c = maximum camber at a particular radius0

D = vector distance defined in (5.2) and (6.2)

f~u) = integrand of (6.8)

F1 ,F2  = functions defined in (A.2) and (A.3)

Hk = helicoidal surface representing k'th blade

ia it = axial and tangential induction factors defined in (A.5)

I = modified Bessel Function of the first kind

k = index identifying a particular blade

K = number of blades

K = modified Bessel Function of the second kind

A= chorl length of a blade section

n = norx7l coordinate in (s, r, n) system

P = pitch of a helicoidal surface

q = p/\(p)

% =r/A(p)

r radial coordinate in (x,r,O) and (s,nr) systems

rh radius of hub

r= unit vector in radial direction

R = propeller radius

s = streamwise coordinate in (s,n, r) system

st = dummy streamwise coordinate

SL' T = s coordinates of leading and trailing edge
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s = unit vector in a direction

S = source kernel function defined in (3.11)

t = blade thickness function

t = maximum blade thickness at a particular radius

T = trailer kernel function defined in (6.9)

T = lifting-line part of T defined in (6.12)

T1  = T - To
1i a = x component of disturbance due to a unit singularity

ut  = tangential component of disturbance due to a unit singularity

= radial component of disturbance due to a unit singularity
r

= streamwise component of disturbance due to a unit singularity

u = normal component of disturbance due to a unit singularityn

un = total disturbance velocity normal to bladen

(s) = normal velocity due to sources

u (b) = normal velocity due to bound vortices

u (t) = normal velocity due to trailersn

un (t0 ) = normal velocity due to lifting-line part of trailers T
(t o

un (t1) normal velocity due to T1
U = function defined in (A.4)

= y component of disturbance velocity due to a unit singularity

VA axial approach flow to propeller

V0  = relative flow past a blade section, neglecting disturbance velocities
o

V = relative flow past a blade section, including lifting-line
disturbance velocities

= z component of disturbance velocity due to a unit singularity
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x = axial coordinate of (x, Y, z) system--positive downstream

y = coordinate through tip of first blade in (x, y, z) system

z = third coordinate of (x, y, z) system

a= angle of incidence

= advance angle--neglecting disturbance velocities

0 = advance angle--including lifting-line disturbance velocities

Y = strength of bound vortex distribution-dimensions of. velocity

Ys = strength of trailing vortex sheet

r = radial circulation distribution--dimensions of velocity x length

6k = e coordinate of tip of k'th blade

p = pressure difference between upper and lower surface of blade

= dumWy z coordinate

= dunmy y coordinate

= angular coordinate in (x, r, 9) system

e, eT angular coordinates of leading and trailing edge

=4 advance coefficient--neglecting disturbance velocities

hydrodynamic advance coefficient

= dumm x coordinate

= duUmm C' coordinate

p = dummW r coordinate

S= fluid mass density

a= source strength per unit area-- dimensions of velocity

= diuwy B coordinate

'= duny c coordinate

= velocity potential

w = propeller rotational speed--radians per second

p' dummy p coordinate

iv



1. Introduction

A linearized theory for propellers can be developed as a logical

extension of the theory of finite wings in incompressible flow. The

principal difference is that a point on a propeller blade describes a

helicoidal path as it moves through the fluid, while a point on a wing

simply moves along a straight line. Although the general form of the

expressions relating shape to pressure distribution is similar in both

cases, the propeller expressions are naturally more complicated due to

the more involved geometry of the motion.

We begin by stating the usual assumptions that the fluid is

frictionless, incompressible, free of cavitation and infinite in extent.

The propeller is considered to be operating in an axially directed stream

whose magnitude. is a function of radius only, and it is assumed that there

are no extraneous solid boundaries. The flow is therefore steady relative

to a coordinate system rotating with the propeller.

The propeller is assumed to have K symmetrically spaced iden-

tical blades. In the present work the existence of a propeller hub is

neglected entirely. The propeller blades begin at some radius rh which

corresponds to the radius of the hub in the actual propeller. Both the

inner and outer extremities of the blades are therefore regarded as free

ends when the lift is required to be zero.. This assumption is obviously

not particularly realistic, and work is presently in progress to represent

the hub properly as a solid cylindrical boundary. However, since the



inner part of the blade near the hub contributes only a small portion

of the total propeller thrust, the "hubless propeller" approximation

may be adequate.

In the linearized case we assume that the disturbance to the

flow caused by the propeller is small, which requires that the blades

be thin and that the camber and incidence of the blade sections relative

to the undistrubed flow be small. As in linearized wing theory, the

effects of thickness and of camber and incidence can be considered sep-

arately. Both can be represented by singularities distributed on stream

surfaces formed by the undisturbed relative flow past the blades.

Blade thickness can be represented by a distribution of sources

and sinks whose strength is proportional to the slope of the thickness

form in the streamwise direction. Similarly, the discontinuity in pressure

across the lifting surface can be generated by a distribution of vor-

ticity whose axis is on the lifting surface and normal to the oncoming

flow. These are designated "bound vortices." The condition of contin-

uity of vorticity requires the presence of an additional distribution of

vorticity whose axis is oriented in the direction of the relative flow.

These vortices known as "trailers" are present not only on the blade

surface but extend to infinity in the wake behind each blade.

There are obviously a large number of possible types of problems

to which steady-state propeller theory may be applied. However, the

following three are of principal interest:

1) Determine the shape of the blade sections for a prescribed
radial and chordwise load distribution.

2) Determine the maximum camber and incidence of a given type
of section at each radius in such a way that a prescribed
radial load is achieved with the sections operating at their
ideal angle of attack.

3) Determine the load distribution for a given shape.
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The first problem is the most straight forward. We assume that the blade

outline and thickness distribution have been determined from considerations

of strength and cavitation. With both the load arxlthickness specified,

the strengths of the sources, bound vortices and trailers are imediately

known. The velocity normal to the blades at each point induced by each

of these three singularity distributions may be determined by integration.

The slope of the section mean line, according to the linear theory, is

equal to the normal component of the disturbance velocity divided by the

magnitude of the undisturbed approach flow. Consequently, if the normal

component of the disturbance is known, the section shape can easily be

determined by integration.

An important consideration is that the shape of the section

mean lines required for a particular load depends not only on the load

but also on the thickness of the blades. This is not true in the case

of a planar lifting surface since the sources cannot induce a velocity

normal to the plane on which they are situated. However, in the case

of a propeller, the sources can induce a velocity normal to the blade

on which they are situated as well as normal to the adjacent blades.

The second problem is somewhat more complicated sincethe chord-

wise LLad is initially unknown. However, as in the case of wing lifting

surface theory, the chordwise load can be assumed to be composed of a

finite number of modes whose form is determined from two-dimensional

theory. The normal velocity induced by each mode can be determined in

the same way as in the first problem. Since the total load at each

chordwise section is prescribed, the amplitudes of some of the chordwise

modes are known initially. The camber, incldence and amplitudes of the

remaining modes can then be obtained by collocation.
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The third case, which is sometimes call the "inverse problem,"

can be solved by assuming that the unknown load distribution is composed

of a double sunmation of chordwise and radial modes. The normal velo-

city induced at a set of points by each mode can be determined as before

and the unknown amplitudes obtained by collocation. This type of problem

would arise if one wished to analyze the performance of a propeller

operating at other than design conditions.

In the following sections, detailed derivations are given for

the disturbance velocities due to the source and vortex systems repre-

senting the propeller. Much of this material may be found in recent

publications by a number of authors. In particular, it should be

mentioned that the results given here in section 4, 5, and 6 are in

complete agreement with corresponding results given by Sparenberg (41

and by PL n L23, provided the proper conversion of nomenclature is

made. Numerical techniques and results have not been included in this

report but my be found in references [3] -- 7



2. Geometrical Considerations

We begin by defining a Cartesian (x, y, z) coordinate system

which is fixed on the propeller. As shown in Fig. 2.1, the x axis

is the axis of revolution with positive distances measured downstream.

The y axis is selected so as to pass through the tip of one blade, while

the z axis completes the right-handed system. It is also convenient to

define a cylindrical (x, r, e) system where the x axis, as before, is the

axis of revolution. The radial coordinate is denoted by r, and the

angular coordinate (measured clockwise starting from the y axis) by e.

The equations relating the two systems are:

y= r cose r = y2-+ z2 (2.1)

z = r sin8 8 = tan'(z/Y)

In order to relate corresponding points on each of the K

blades, we define 6k as the e coordinate of the point at the tip of

the k'th blade. Assuming that the blades are symmetrically arranged,

these angles are:

6k 2T(k - ) k = 1, 2...K (2.2)

K

which is illustrated in Fig. 2.2.

In order to conserve symbols, we will assume at the outset

that the propeller radius R is equal to unity. This is equivalent to

saying that all length dimensions (including those present in linear

velocities) have been divided by R.

The undisturbed flow past the blades is composed of a tan-

gential component wr due to the rotation of the propeller, and an

5
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axial component VA(r) due to the oncoming stream. Since there is no

radial component, the streamlines lie on cylindrical surfaces, r = con-

stant. The angle between the undisturbed relative flow and the yz plane

can be seen from Fig. 2.3 to be:

.1 (A(r!) 1al>()
O(r) = tan-  (-) = tan r (2.3)

uWrr

where 0 is known as the advance angle and

X(r) = r tano(r) (2.4)

is defined as the advance coefficient. The streamlines are therefore

helices whose pitch P(r) is equal to 2TO(r).

The sine and cosine of the advance angle, which will appear

frequently in the following sections, can be expressed in terms of r

and

sino(r) - (r

(2.5)

coso(r) - r

as can easily be seen from (2.3).

We next assume that the propeller blades lie approximately on

the helicoidal surfaces swept out by the undisturbed flow past the

radial lines

(2.6)x 0

This does not impose any restriction on the blade outline, but

8



neglects the effect of blade rake.

The k'th blade and its wake is therefore located approximtely

on the helicoidal surface

Hk(x, r, 0) = x - (r)(e - 6k) ' 0 (2.7)

It is also convenient to define an orthogonal curvilinear

coordinate system (s, n, r) on each of the IL surfaces. The s coordinate

is formed by the intersection of an axial cylinder and the surface Hk,

and is therefore tangent to the streamlines of the undisturbed flow. The

r coordinate is radial, as before, and the n coordinate is perpendicular

to r and s is directed in such a way that it has a positive axial

component. This notation is illustrated in Fig. 2.1.

If the pitch of the helicoidal surface is independent of radius,

the r coordinate through any point on remains on Hk . The n coordinate

is therefore normal to Hk . If the pitch is a function of radius, this

is not necessarily true so that n may depart slightly from the true nor-

real to the helicoidal surface. However, it is assumed that variations in

pitch are sufficiently gradual for this discrepancy to be negligible.

As can be seen from Fig. 2.1, the expressions relating the

(s, n, r) and (x, r, 8) coordinate systems are:

A(r) x + r2 (g - 8k)

s = x sinO + r(8 - 8k) coso 
k)

Vr2 + )?(r)
(2.8)

xr - r)e - 6k.)
n =x cos - r(0- 6k) sn -

10



On any one of the K helicoidal surfaces, the relationship beteen x and

e can be obtained by combining (2.7) and (2.8)

s = r2 + (r) (-k) (2.9)

We can now define the blade outline and the shape of the blade

sections in the (s, n, r) system. The s coordinates of the leading and

trailing edges are sL(r) and sT(r) respectively, while the angular

coordinates are designated %(r) and eT(r ) .

4(r) = sT(r) - sL(r) (2.10)

The blade sections can be decomposed (as in two-dimensional

wing theory) into a symetrical thickness form t(s, r), a mean line

c(s, r) and an angle of incidence oa(r). The maximum thickness of a

section at a particular radius is denoted t 0 (r) and the maximum camber

is c 0(r). This notation is shown in Fig. 2.4.

11
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3. Normal Velocity 3nduced by Blade Tinesu

According to linear theory, the tbicknesa of the blades can be

generated by a distribution of soures and sinks located on the helicoidal

surfaces representing the blades. We consider first a point source of

unit strength located at a point with Cartesian coordinates (g, T, C).

The velocity potential if this source is

§(, Yz Z) - - (3.1)
SV'x - C)2+ (y 2 r) 2+ (,. 2

and the Cartesian components of velocity at (x, y, z) are

i(x ,ay , z, -, -) =-"(z
Y, T*[( _ C- )I+ (y -1)2+ (z.. C)2.3/2

(3.2)
y, z, , n, C) = - - '7(x' , Z

4n [( - C)2 + (y- )2 (z _ C)2Y/2

(x1, 
[(X - ) + y + (z - /-

The bars on the symbols (u, v, w) denote velocities due to

a point source of unit strength. The total velocity at a point due to

a distribution of sources is identified by the same symbol but without

13



a bar on top. It should be mentioned that the symbols (u, v, v)

will not be used exclusively for source velocities but will be used to

denote disturbance velocity components in general. Since we are consid-

ering only sources in this section, there is no need for further

identification. However, additional symbols will have to be introduced

later to distinguish between disturbance velocities due to source and

vortex distributions.

The velocity components given in (3.2) can be converted to

cylindrical coordinates using the equivalent of (2.1)

y = r cose z = r sin@

I = p cosy C = p sinc (3.3)

where (x, r, 0) is the point where the velocity is to be evaluated and

( , p, cp) is the location of the source. The axial tangential and

radial components are

i.a(x,r,e,C,p,cp) x -

41(x 2 +r)2 2+ p2_ 2rp cos(Cp -1 3 / 2

iit(x,r,9,g,p,cp) cose - sing =4(x -P sin(cp - )

r)2r 2 . 2rp cos-e)Y/2

Ur(x,r,9,,p,cp) i f sinO + i cosO = r -pcos( - B)
- )2 + r2 + p2 . 2rpcos(2_Te)j3/2

14



The velocity components gLven in (3.-) oan be rsolved into

components in the helicoidal coordinate system by means of (2.8)

i 5
8(x, r, e, 9) Ps () > (r)"ia+ rutr' + X2 (r)

'a~,r, * , CO = ra Xri/r2 +>-2(r)

In this application, we are only interested in the velocity

norml to the helicoidal surface. This can be obtained by combining (3.4)

and (3.5)

in(x, r, e, C, , cp) = r(x - C) +X(r)p siz(cp - )
4- r)2+ r2 + p2 - 2rp cos(Cp-9)]/2

(3.6)

For points on the helicoidal surfaces representing the blades,

x and C are related to 8 and cp by (2.T). If we adopt the point of view

that the velocity is always to be computed at a point (x, r, 0) on the

first blade, while the position of the source is at some point

P, p, 9+ 6k) on the k'th blade, there follows

(3.T)
C N =p)CP



so That (3.6) becomes

k)r (r)e - s(P)V) +\(r)p Gn(y + Ok, )

%-P)V? r2+ P2_. 2rPOOs(y4.5kI)]3/2

(3.e)

If >is independent of radius, the term (X(r) -X (p)cp) appearing both

in the numerator and denominator of (3.8) can be replaced by)%(e - p).

In this case, the angles cp and 0 in (3.8) appear only in the combination

((P - 9), which is equivalent to saying that the velocity depends only on

the angle between the source and the point. Since this represents a

great simplification, it is worthwhile in the general case to introduce

the approximation

X(r)6 - X(P)cp X >(p)(cp -) - X(p) (3.9)

where, by definition

The geometrical interpretation of this approximation is that the

axial distance between the point at (x,r, 0) and the singularity at (C,pc)

is assumed to be the same as if the pitch of the helicoidal surface at p

were the same as at r. If the variation of Xwith r is gradual, the error

in axial distance will be small when p is close to r. Consequently, the

error introduced in determining the velocity induced by nearby source

elements would presumably be small. For distit elements, on the other

bad, a chang in the axial component of the distance between two ele-

ments will not have a large effect on the direction or maneitude of the

induced velocity.

16



Of course, whien X is constant, there is no Q atlaf ti*Qt~'

Substituting (3.9) into (3.8) s& inlng over the 1'blad.so

ye obtain the result

!K
S(r,p,&) = I ( U+ P sino + k)

,/ [>-22 + 2 
-2rp oa(P& + 6)

(3.11)

where S(r,p,p) represents the velocity normal to the helicoidal surface at

a point (r, 9) on the first blade induced by K unit point sources at a

radius p. The angular coordinates of the sources are (qP + 8k - 9)

measured from the y axis, or (P + 8k) measured from the point (r, 0).

It can be seen from (3.11) that S(r,p,) is an odd function of p,

S(r,p,~-) = (rp,.) (3.12)

This is obviously true when k = 1. When k > 1, the contribution of the

k'th blade to S is odd provided that we change the sign of 'k as well

as . Since the sign change is equivalent to sunning the blades in

the reverse order, the total result is unaffected, hence we conclude that

S is odd.

We next need to determine the strength of the source distribution.

According to linear theory, the source strength per unit area, a, is

given by [8]

(po P) VO(p) at (p, C) (3.13)

17



where V0 is the magitude of the undisturbed relative flow Aindt

is the derivative of the thikness form in the streanwie direction.

It is evident from Fig. 2.3 that

(t VA(P)22pj = - (,,iiVOWC y (P) (3.14)

so that

a(P,cp) :VA(P) F84 P (3.15)
A(P)

The total normal velocity at any point on the first blade can now be

obtained by combining (3.11) and (3.15) and integrating over the sur-

face of the first blade

1.0 sp )

u(s) (r,q) :(p,=) S(r, P, p) ds dp (3.16)
P=r h  S=SL(P)

The chordwise integration in (3.16) can be expressed entirely in terms

of the variable p by introducing

ds -- p7  (p)

(3.17)

18



so that

10 -e
(B) aP ~ &O ~,~) +?Pd P (-8

P=rh 

While the integration in (3.18) cannot be carried out explicitly in

most cases, various numerical schemes are available which will yield

results of sufficient accuracy. It is important to note that the

integral in this case is not singular since S(r,p,P) ba a finite

limit when r-p and &-0.

19



4. Distribution of Bomad Vortices and Trailers

The pressure loading on the blades can be repreented by a

distribution of radially oriented bound vortices lying on the helicoidal

surfaces representing the blades. We again introduce the du cylindrical

coordinates (C,P,cp) to denote the location of an element of the vortex

sheet, while (x,r, e) are the coordinates of a point at which the velocity

is to be determined. The strength of the bound vortex sheet per unit

of length along the helix at radius p is y( P,cp). The pressure difference

across the surface according to linear theory is ( 8 )

Ap (p,cp) = 5 VO(p) y(p,w) (4.i)

where p is the fluid density. Substituting (3.14) for the approach

velocity V in (4.i) there follows

f224p(PC ) =-FVA(P) P + >. () Y(P"C)

)X(p) (4.2)

The total circulation around a blade at radius p is

s (P) e (P)

r(p)= y(p,(P)ds Y(P") 4P 2" + (P)d (43)

sL(p) %(P)

where SL and aB are the angular coordinates of the leading and

trailing edges, respectively, and the element of arc length ds has been

20



expressed in term of dr using (2.9).

mn order to 3eserve continuity of vorbicitY, there mWt also

be a system of trailing vortices whose axis is in the a direction. 2be

requirement of continuity of vorticity on a helieoidal surface Coa be

obtained very easily by keeping track of the total vorticity entering a

differential element of the surface, as shown in Fig. 40. he strength

of the vortex lines entering the four sides of the element is

bound circulation entering bottom = y((pp) +

bound circulation entering top = _y(p~idp,cp) J(P 5 2+ \2 p~

trailers entering left : ys(p,q) dp

trailers entering right -ys(pcp + dcp) dp

Setting the sum equal to zero gives the result

ay 5 (p ,c) aJ 2
P(I )=_. (p,)/p +

where y denotes the strength of the trailer.

Equation (4.4) holds only for points in the interior of the

blades. At the leading and trailing edges, a trailer is generated, so

to speak, whenever a bound vortex tries to run off the edge. This can

be seen by taking as the control area an infinitesimal triangular element

as shown in Fig. 4.2. In order for the blade edge to form the hypotenuse

of the triangular element, the relationship between dr and dp mWt be

a OL
= ' - dp at the leading edge.I (4.6)

= dp at the trailing edge

21
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At the loadin~ edge,. the bo~md cireUltion entering the bottom aebcw

is

Y(P,%)../ P -+F(P)dcP(4-T)

w-ile in this case, there is none leaving the top. Mhas mut be balanced

by the total strength of the trailers entering the right side, which to a

first order is

-YS(P,e ) dp (4.8)

combining this with (4.6) and (4.T) gives the result

Y (P, GL = Y(P'eL + ' (p) 4)

A similar analysis of circulation entering a triangular element at the

trailing edge shows that Y uAt also be discontinuous at that point.

f ys(p,d) is the strength of the trailer just inside the trailing

edgand y (p, +) is the strenth just outside the trailing edge, the

following expressions hold to a first order

bound circulation entering bottom = Y(PO) J72+Yap

bound circulation leaving top = 0

trailers entering left = ys(p, -) dp

trailers entering right = -Ys(P, +) dp

Setting the total equal to zero and introducing (4.6), there follows

23
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Mie total strength of the t'mler at my7 poit In obtained by

izitopgting (1.5) and adding the contributions of the edges from

y.(P,) =Y(PAL) P + eNp) ..2 ~ a S-2 -)()] (I..:

k(p)

y6 (p,(p) =y(pOOe)P)S V YCP,9P)j 2+ Xe(p)] d,

OL(P)(I

-y(p, O) p+ X)ew

for FI <C

Noting that the limits of integration above are functions of p, it is

evident that (4.13) is equivalent to

S(P) _ _ _

Y. ( -CO S3 Y(~p /2 + F(p) dy =- (34.141)

f or OT P

I2



5. Nonal Velocity Induced by Bound Vortices

We determine next the velocity induced at a point (x, r, 9)

by a bound vortex of unit strength located at a point (q, p, q). since

there is no such thing as a "point vortex," what we will determine is

the velocity induced per unit length of the vortex. This can be determined

from the law of Biot-Savart, which in this case can be written:

(1 , ,) = xD (5.1)

where~ ~ ~ 4 rD Dsavctrfo

where is a unit vector in the radial direction, D is a vector from

the vortex (g, p, yp) to the point (x, r, e), and (u, -,, ;) are the

Cartesian components of velocity. The components of D can be seen

from Fig. 5.1 to be:

D =[(x - ), r cos9 - p cosp, r sinB - p sin cp] (5.2)

while the components of a unit vector in the radial direction are

_o I
r cost, sinJ (5.3)

=10,cs,

Substituting (5.2) and (5-3) in (5.1) yields the following expression

for the velocity components

- r sin(p - 0)

1W [(x _ C)2 + r 2 + P2 _ 2rpcos( - 3J 3/2

26



2T

(xr,)
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(5.4)
conerj I[(iixI~t + . 2rpcos(qp - 6]/

4,(, [(x - g)f + r2 + 2 2rpoos( - 3/2

Proceeding in the same way as with the source expresslons, we next
convert to -,ylinrial coordiates usin (3-3)

'aa a r sin(T - e)

C()2p -r)2+p+2rpcosP re/3/2

;t cosg sine -- (x - )cos((P-)3/
Cl{ )2+ r2+ p2 _ 2rpcos(Cp 3/2)

Ur - Os + -+ cos0= (x sin(cpe
4w[(x ) + -2r -os(-)] 3/2

The component normal to the helicoidal surface is obtained

by substituting (5.5) into (3.5)

28I _____)+___-LI co__-_

x|r



Equation (5.6) expreses the velocity 1I€uced at (x, r, 9) b7 s =It

bound vortex at (C, p, (). Xf we agln consider the spe4ol osse o'

the velocity induced at (r, *) on the first blade by a = b1 bl vow x

at (p, cp + 8k) on the k'th blade, (5.6) becomes

Urp-) -r sin(Q-e+8k) - (r)[X P -A(r)$cos(9.44k)un(r,G,p,q,,k) =, -
IW/2+ (r [(A\(p)cp -A(r)e )2+ r 2+ p 2 - ros(pW /

where x and C have been eliminated using (3.7).

Introducing the approximation

po- Xp w -X(p) (cp- e) =-%(p)p (5.8)

as before and sunning over the X blades, we obtain the result

Sr ' 2 sin(4 + 8k) - \(r)A(p)pcos(j& + 8k)
B(r,p,k)r2 t 2 r 2 + 2 2rpcos( + Pk23/2 (13/2

In equation (5.9), B(r, p, .) represents the norml velocity indu ed

by K unit bound vortices and is analoious to the expression for the

velocity induced by the iit sources given in (3.11). It is also

evident that B is an cdd function of p provided that the blades are

symnetrically arranged.

The total velocity at (r, 0) induced by a distribution of

bound vortices can now be written as an iuteral over the surface of the

first blade.
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~(b) 1.0 Y (rpi) sd
Nub(r,e0) Y(=p ~, ,h od

p ar sSL(P)

( .io)

,= + B) B ,, &. 2p dp

In this case the integral is singular at the point (p = = O)

so that the Cauchy principal value mist be taken.
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6. Nonwi Velocit nAduced by !rmiler

We begin by determining the velocity 4naxced at (x, r, 1) by

a trailer of unit strength originating at a point (9, p, 9) and exbeti

to infinity downstream. In order to distinguish a general point on

the trailer from its starting point, the former is identified by the

dummy coordinates (g , p , c ). Since the radius of the trailer is

assumed to be constant, the prime on p is unnecessary and will therefore

be omitted.

The velocity can be expressed according to Biot-Savart's law

and an integral along the vortex

J JD I(u;; =N x 5 s' (6.1)

ID
where s is a unit vector tangent to the trailer and ds' is a

differential element of arc length along the trailer. Referring to

Fig. 6.1, the vector from a general point (; p; cp') on the trailer

to the point (x, r, e) can be seen to be

5 = I (x-'), r cose - pcospl, r sine - Psin '] (6.2)

which is the same as (5.2) except for the pries on C' and e'.

A unit vector tangent to a helix with an advance coefficient X p) is

B~ 7 ) p a iip', P 00sP(f (6.3)

P +2 3(p1
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So three velocity coqnonents can be obtained by hub6sttzktng (6.2)

and (6.3) in (6.1)

€@- - er~o5( p' - 8) d,

(P I x - I)2 + r2 + p 2 _ 2rpcoswhJ]3/2

(6.4)

.ox,r,e,,,,,) - I(x- E') pcos - X( )r sine + X(,)P g.,,,dJp.
o,; [(x C ,- + r 2 + 2- 2rp cosp,] 3/2

CO

(x,r,e,,p,) =cse -X() Cos + (x - 9)p sirmptd~i
Ty (X - v) 2 + r 2 + p2 

- 2rp coscpl3/2

In these equations the variable of integration has been converted from a'

to cp' using the relation

d,= P dp', (6.5)

The velocity components in (6.14) can be resolved into axial tangential

and radial components as done before for the sources and bound vortices

=2

a - [ 2 - pr coo(qP' - 0 d @'

(, [(x V) 2+r2+3 23 _2rpcoaJ3/2
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- ' ase- ~ ine- ~ [)~) (r - Peos(4P'- 0))+ (x-g')P

cp'=rf~ _ C,)22+ P2_ 2rPcos (PI] 3/2

(6.6)
40

1 [X(P) p sin(P' - 0)+ (x - ')p cos( '-0)] df,'-- sinO + cose =r
Cp' = [(x- )2 + r 2 + p2 _ 2rp cosv,] 3/2

The component normal to the helicoidal surface at (r, 6) is obtained by

combining (6.6) and (3.5)

UnXr, g~, ) = l S

4r %//r2+ X (r) cp =p

rp - r2 p cos(cp'-O)- X(r)X(p)(r-pcos(cp'-e)J - (x-')pX(r) s0n(p'- e) dp'

[(x -,)2 + r 2 + p2 _ 2rp cosc,]3/2 (6.)

By again introducing the approximation

x- =(r)e - X(p)cp' - X(p)(cp'- 9) -- -(

which is equivalent to (3.9) and (5.8) and replacing c'- S by v + 8 k

(6.7) becomes

iin(r,p, ,k= 14, rT + XL()

[Q((r)X(p)p - r2p) cos(V + 8k) + X(r)X(p)p, sn(V + 6k) - r(,(r)X(p)-p2 )

[ >_)V2 + r+ 2 rp cos(, + a j 3/2

(6.8)
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'&e velocity lI aased by X unit trailers Is obtmed ty emmikg 4 '

over the blades

T(r0p, i) = %(,p,a,,k) (6.9)
k=l

The total velocity is obtained by Introdunlg the strmg* or

the trailers given in (am.5), (1.9) * (4.1l) and integrating over the

blade surface.

1.0 %T(P)-O S

u (t)(r,) = - )?(P,]* ),/p2  Xp +
h CPP)-e

(6.10)

1.0

[f (P~e(P)) T(r,p,B 1%(p)-O) B60)- -Y(P)%(p)) (r,p,(p) NO0)
2 .. --- --

The first integral in (6.10) represents the contribution or the

trailers originating from points in the interior of the blades, while the

second integral takes into account the trailers starting at the leadIM

and trailing edges. The (auc principal value of the Integrals mst

be taken whenever the range of integration includes the point (re)

where the velocity is to be determined.
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W1ile th enoess nla for the velocity Induobed the s oee "Aore=1

vortices ar not particularly siqnle, (6.10) is a ich mre difficult

expression to evuluate due to the fact that the fVACtIon T(rp$1A) ,avolves

an integoation over a seud.-ifinite interval. However, this difficulty

can be eliminated by considering T as the sum of the two functions

T= T + T, (6.11)
0

obtained by splitting up the range of integration in (6.8) in such a

way that

T 0 (r,p) =T(r,p,o) f ~ .(v) dv (6.12)

and

lk

T (r, P.p f l(v) dfv (6.13)= +] " r 0 ( ) d (.3

where f(v) is the integaud of (6.8).

It is evident that f(v) is an even function if one applies the

same argument used in sections 3 and 5. Coonsequently,

%(r,p) * t(v) dv (6.i.i)

is one-half of the velocity induced by a set of X mit helicoidal vortices

extending from (-s,). Since the velocity field of such a configuration

is two dimensional ( it is independent of a in the (s,n,r) coordinate

system) an alternate expression for To can be obtained from a two
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dimansiona1 potential. A derivation of *is vowasa us gv=s

Lerbs ( 9 ) who found the result to be on lntalte s .s at mixdifled

Bessel Functions While this, In Itself, would offer no pSer~ga~

coMutational advantage over the Integral r.pesentatldn XLVM Ia 26.13),

it is fortunate that highly accurate asymptotic approximations to the

sums of Bessel functions are available. The moat accurate approm1stions

were developed by Wrench(l0), and it has been found that his formlas are

far more efficient than the numerical integration required to evaluate

(6.13). The exact and approximate expressions for To, taken from Lerbs'

and Wrench's work with some modification in nomenclature, appear In

Appendix A.

We consider finally the second part of (6.10), namely T1 .

Since f(v) is even, T, is an odd function of

Tl(r,p,-$) = - Tl(rp,l) (6.15)

This fact is not only useful in the numerical evaluation of T1, but

also permits us to draw some important conclusions regarding incidence

and camber which will be considered in the next section.

Leybs' results are expressed in terms of "induction factors"
which differ from T by a constant factor.
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T. Toal DistuAsce Velooty Normal to the Blades

The total diturbance velocity norml to the first blade at

a point (r,9) is obtained by suuing the effects of thickness (3.xT),

bouA vortices (5.10) and trailers (6.1o)

u(r,o) = u)r, ) + %)r,) + %(t)(r,e) (.1)

We can further subdivide U(t)t, p1arts, (to ) and (tl ), where the

former represents the contribution of T and the latter the contribution

of as defined in (6.12) and (6.13). An expression for u(t°) can be
T, n

obtained from (6.10) be replacing T(r,p,l) by T0 (r,p) and bringing To

outside the t integration (since it is independent of p)

1.0 o'r,:-

(t 0)(r) T' T(r.,p)'. £ ) [YcP,(P+)iP+,\2P)dCi +
P=r,, =AW ) '

(7.2)

Y( ()P) - - op
ap ap

This can be simplified using (4o13) and (4..14) to

1.0
(t°)(r) =  b - '  To(r,p) dp (T.3)

P=rh

where r(p), as defined in (4.3), is the total circulation around each

blade at a radius P. This is well-known as the "lifting-line" equation

which represents the velocity induced by the trailers shed from K

concentrated radial bound vortices.
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The lifting-line approximation to u,(r) is obtained by deter-

ngt U(to) from (T.3) and approximating (b )(r,0 ) from wo-dimsional

theory based on the sections at the particular radius in question. The

latter approximation is frequently referred to as "strip theory." The

velocity components u(s) and- (tl) are assumed to be zero in lifting-line

theory. However, these assumptions are valid only when the aspect ratio

of the blades is large, which is never true in the case of a marine pro-

peller. Consequently, the lifting-line velocity %tO)(r) is of limited

usefulness in itself and should therefore be considered simply as one

of the ingredients in the total velocity given in (T.1).

We see from (T-3) that --tO)(r) represents a disturbance

velocity which is constant over the chord. The remining terms in (T.1)

are generally functions of both r and 9 and depend on the blade outline

and the load and thickness distribution.

We now consider the special case where the blade outline,

chordwise load distribution and chordwise thickness distribution is

syimetrical about the lines 6 = 6k through the tips of the blades. In

this case, it can be shown that-u(S)(r,G) is an even function of 9,
twhile

u(b)(r,O) and u(tl)(r,e) are odd functions of 6.
n n

Consider first the velocity due to the sources, unS)(r,e).

It was shown in section 3 that the function S(r,p,j) is an odd function

of . Recalling that p = - , we can write

S(r,p,g - ) - -S(r,p, -p + 9) (T-4)

Since the blade outline is sy.mtrical, we also know that

%(p) -(P) (T-3)
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while the fact tbat the thickness form is symmetrical about the add-eboz

requires that the source strength be an odd fumction of

a(P,(P) -q (T.6)

The total velocity induced at a point (r, e) by the sources

according to (3.12) is

1.0

Cr,, f P2 + ,/ 2, ,, o°,,) S(rp,,p-,) dp dp (7.7)

while the velocity induced at the corresponding point -e is

rhV0, 9) p + (p f o(p,cp) S(r, p+B) dcpdp (7)

We next introduce the symmetry properties expressed in (7.4), (7.5)

and (7.6) in (7.8) to obtain

1.0 -OL(P)(so 2 2 - dc )

uj (,-,) : p (p) , 0(p,-9) S(r,p,-p-e) d d (7.9)

Substituting -p for r as the variable of Integation in (7.9) and

changing the sign of the limits of integramtion accordingly, we obtain

10=- p2 + O(p) f (p,cp) S(r,p,q-,) dcp dp (7.10)

rh T()
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Since this is the negative of (7.7) except with the upper and lover limits

of integration reversed, we conclude finally

U s) r,o) =- uCe)Cr,-O) (7.11)

The velocities u(b)(r,8) and 141tl) (r,O) can be shown to be

odd functions of B in exactly the same way. In this case B(r,p,p)

and T(r,pp) are odd functions of p as was S(r,p, .&) while the strength

of the bound vortices and trailers is an even function of y. This

introduces an additional minus sign in going from the equivalent of

(7.8) and (7.9)- Consequently, we conclude that

un~b)(r,G) - (b)(-)

lb ~ u ()(r,-6)

(7.12)

An important conclusion which can be drawn from (7.12) is that a propeller

of zero thickness with symmetrical blades and load distribution will require

no additional incidence beyond that given by lifting-line theory, i.e.,

the contribution of (t)(r). An additional incidence correction (aside

from corrections due to viscosity) can appear only as a result of blade

thickness. The lifting surface correction therefore consists entirely

of camber in this case. Conversely, the thickness distribution cannot

induce a net camber since it is an even function of 8.

These conclusions obviously do not hold if the assumed symmetry

is not present.



8. Non-Linear Refinements

According to linear theory, the singularities represemting

pressure loading and thickness are distrib:ted on stream surfaces

formed by the undisturbed approach flow. Some improvement in accuracy

would presumably be achieved if the sources and vortices on the blades

were located on the mean lines of the sections at each radius and if

the trailers were made to follow the actual streamlines extending down-

stream from the trailing edges of the blades. However, in this case

the position of the singularities would depend on the disturbance velocity

field which, in turn, would depend on the position of the singularities.

While a complete solution of this non-linear problem is

presently considered to be both impractical and unnecessary, there is one

refinement which may be introduced with very little additional complication.

This is customrily referred to as the theory of "moderately loaded"

propellers, as contrasted to the strictly linearized case which is

termed "lightly loaded."

In the moderately loaded case, it is still assumed that the

distortion of the oncoming flow due to the radial component of the

disturbance velocity is negligible. Consequently, the streamlines remain

on cylindrical surfaces as before. However, in this case, the distortion

of the streamlines due to the axial and tangential disturbance velocities

is taken into account in an approximate way. It is assumed that the

resultant streamlines lie on helicoidal surfaces whose pitch includes

the lifting line disturbance velocities obtained from (7.3). The

modified surface can be expressed in terms of a hirodynamic pitch angle

0,, which can be seen from Figure 8.1 to bet
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- tO))r) + ,(r (.1)

W. + u(t°)

It should be noted that the tangential disturbance velocity

is negtive in Figure 8.1, which is evident if one co.pares Figure 8.1

with the velocity diagram sbown in Figure 2.3. The plus sign In the

denominator of 8.1 is therefore consistent with this sign convention.

A hydrodynaic advance coefficient Xi can be defined as

Xi(r) = r tanOi(r) (8.2)

which is analogous to the definition of X in (2.). Finally the

resultant approach velocity V* can be seen from Figure 8.1 to be:

(to)V% (r)- °)t (r)  (8.3)
V'r) =VA(r)iOa r) U +

The lifting line disturbance velocities for a prescribed radial

load distribution may be obtained from (7.3) as before. The only

difference is that X is replaced by A in the exlressio for To. Asa,

result, To becomes a function of ua 0 X so that (T.3) represents

a non-linear integal equation rather than simply an ntegral. However.

a solution can readily be obtained by an iterative schem where the j 'th

approximstion to is obtained by using the value obtained in the

(j - 1)bt iteration in deteruiing To . The frst approxlmationis simply

the linear one, i.e., -
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FIG. 8.1 VELOCITY DIAGRAM AT A
LIFTING LINE



Once \,is determined, the evaluation of *ae raesining

velocity corqponents ua and) %(ul) ca be acomqpishd In the

same vay as in the completely linearized case. Oonsequuatly, the onl~y

addtional complication introduced in the theory of moderately los"e

propellers is that an iterative solution is required to solve the lfting

line equation.
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APPAWM

yof Encressions for Mnduded Velocities at a LiftLj Line

The axial and tangential velocity induced by K helicoidal

vortex lines of unit strength is given in (6.6). The lifting-line case

is obtained by setting = c= x 0 and by replacing c' by v + k

and C' by X(p)v

Q@ 2
ii (r~p) (P - Pr cos~i, + 8k3dua~r P) r[)(g ' 2)]312

o t(p)v2 + r2 + -.2rpcos(v + 8k

(A-1)
Go

r(X())(r - pcos( + 6k) - i(p)vp sine, + 6k)) dv

0 r2 + p2  2rp cos(v + 6 k)3/

Equivalent expressions are given by Lerbs(9 ) in terms of

modified Bessel functions. With some slight changes in nomenclature

and siga conventions, these results are

for r < P

2Kp I ]

IiVi X(P) X(p)
1

it (r, p) = 1
2Trr?(p)

where

n-1 (P) A(P) (A.2)
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and where I and are the modified Bessel functions of the first

and second kind respectively, and the prime denotes differentiation

with respect to the arguments.

For r > p

U(r,p) - - - ( ..
2 (r )F(p)

at (r.p P 4r P] (A.3)

n=l

Te aMomtions to P1and 2 developed by Wrench ( O) are

2 F/ 2 211 1..+.90.1. 1 + 2 [3% -2
2X% 1+ q 1 24K % 2T~/2~ ~'

lq1 / 2 0 . 1
21q -I - -[~23/2 + 3 -2 J 1

where % p/ (p) q - r/(p) (A.)
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The quantities %(r,p) and S,(r,p) can be converted to

"i uction factors" as follows:

ia(r,p) = - 4IT(r-p) %(r,p) (A.5)

it~r,p) = Mn(r-p) ilt(r,p)

When defined in this way, the induction factors are always positive for

a right-handed helix. The minu sign in the expression for ia(rp) is

not present in Equation 6 of Reference (9) where induction factors are

first defined, but it is incorporated in later expressions in the paper.

The reason for defining an induction factor is to obtain a

quantity which approaches a finite limit as r-p. These limits, as

derived by Lerbs and others, are

:La(r,p ) -- osP(P )

(A.6)
(r,p) - si(p)

Finally, the quantity To(rp), which represents the velocity

normal to the helicoidal surface at a point r on the lifting line can

be expressed in terms of induction factors using (3-.5) and (A.5)

! 0X~~p) ta(r,P) - X(r) S("p) ria(1~p) + )() (t(rP)
To0 (r, p) =r) (A.T
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